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Orthogonality between Scales and Wavelets in a 
Representation for Correlation Functions. 
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Exact formulas for the correlation functions of lattice scalar field models in Z d, 
d~> 3, such as the dipole gas and anharmonic crystal are derived in terms of the 
effective action generated after n applications of the block renormalization 
group transformation. Utilizing the orthogonality between different momentum 
scales (relations due to the wavelets implicit in the structure of the block tenor- 
realization group transformation), the formulas are quite simple, isolate the 
dominant term, and, in the thermodynamic and n--* ~o limits, reduce the 
analysis to local estimates of the effective action. Based on a large-small field 
analysis, the two-point function is determined and it is shown how to extend the 
results to general correlations. The results proved here show the usefulness of 
the "orthogonality-of-scales" property for the study of correlation functions. 

KEY WORDS:  Orthogonality between scales; correlation functions; block 
renormalization group; dipole gas. 

1. I N T R O D U C T I O N  

The present paper establishes rigorously the thermodynamic limit of a use- 
ful representation for the correlation functions of some lattice scalar field 
theories such as the dipole gas and (V~b) 4 models, d>~ 3. The analysis here 
completes the perturbative study described in a previous article, ~1) and the 
treatment is carried out in the framework of the large-small field analysis 
of refs. 2 and 3. Only the two-point function is studied in detail, but we 
indicate the extension to general correlations. 

Our aim is to show the usefulness of the orthogonality between dif- 
ferent momentum scales for the study of correlation functions (property 
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696 Pereira and O'Carroll  

due to the lattice wavelet structure implicit in the block renormalization 
group). We expect later to obtain similar representations for more 
complicated models and other renormalization groups. 

Let us summarize the results. The final representation leads to exact 
formulas for the correlation functions, not only to asymptotic approxima- 
tions. Different momentum scales represented by certain operators in these 
formulas are shown to be related to mutually commuting orthogonal 
projections which are associated to lattice wavelets. This "natural" 
orthogonality between scales makes the formulas quite simple, and their 
analysis poses no difficulty. The terms giving the correct long-distance 
behavior and the subdominant contributions are separated in the correla- 
tion functions, which are determined only by the limit of field derivatives 
of the effective action at zero field and by a sequence of wavefunction 
renormalization constants. The long-distance behavior for the correlations 
confirms existing results, ~4'5) but the error term is smaller (i.e., we have a 
better control of the correction to the terms associated with the massless 
Gaussian theory). 

The models to be considered are given by the finite lattice scalar field 
theory expressed by the Hamiltonian 

JC~(~b) = �89 A~b)+ V(~b) (1.1) 

where ~b(x)~R; X6AN,  A u = [ - - L N / 2 ,  L N / 2 ] d n Z  d, L odd, d>~3, and 
zJ - ~0  (considering Dirichlet boundary conditions; for periodic boundary 
conditions we shall include the zero mode regulator; see ref. 2). V is 
assumed to be a functional of the vector field 8j~(x), X6AN, invariant 
under lattice translations, rotations, and reflections, even, and vanishing at 
zero, 

V(~b)= ~ v(~jg(x)) (1.2) 
I t ;X E A N  

The lattice dipole gas and anharmonic crystal are examples of such 
interactions. 

To obtain the representation, we follow the flow of the generating 
function 

Z(h)  = f e x p [ -  H(~b)] D~b (1.3) 

H((9) = W(fb) - (h, (~), Dq~ = HX~AN d~(x), by the block spin renormaliza- 
tion transformations given by, in the first step, 

e x p [  - n l ( ~ ] ) ]  = S exp[ -H(~b) ] 5(C(~ -- ~) Dq~ 
(numerator with ~ - h = 0) 

(1.4) 
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where 6(CO--~')=I-Ix~AN l'5(C~(x)-O(x)), and C~(x)is the rescaled 
average in the block b ~  of side L, centered at Lx ~ AN, 

C(J(x)=L(d-2)/2 L d ~ O(Y) (1.5) 
y ~ bLx 

L (d-2)/2 is the scaling factor (using the canonical field dimension). 
After n steps (n ~< N), making explicit at each step the minimum of the 

effective action Ecalculated after discarding the small perturbative potential 
and considering the constraint ($(C0 j -  ~bi+~), where ~b j+~ is the block field 
at the ( j +  1)th scale], and separating the marginal terms (local quadratic 
part), we obtain (see ref. 1 for details) 

Z(h) = c exp[l(h, P.h)] 

x f exp{-V"(O~,[M,O+G,h])-�89 DO (1.6) 

where c does not depend on h; b, is the wavefunction renormalization 
constant at the nth step; V n is the nth perturbative potential minus its local 
quadratic part; Pn and G,, are given by 

n~ t 1 (b"-bJ']2MjFjM~ (1.7) P n = b ; I A - l - j = o  ~ lk---'~j /] 

" ~ I ( ~ ) M f j M * j  (1.8) 
j=O 

with 

Fj = A j  1 - A ? I C t A j  + 1 C A j  1 (1.9) 

Aj = (GA -~C]) -~ (1.t0) 

Mj=,  lC , j (1.11) 

where Cj is the rescaled average over a block of side U ,  and is given by 
(1.5) replacing L by U.  We remark that the limit of A, as n goes to infinity 
is the fixed point associated with the continuum Laplacian, and that Pn 
contains the main terms for the correlation functions (as we hope, and 
prove later, since it is formed by the minimum of the effective action 
separated at each step). It is shown in refs. 1 and 2 that 

IMJ)M~(x,y)I<~L J(a-2)exp(--et'L-ilx--y[), ~ ' > 0  
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so that, roughly speaking, the j th  term of(1.7) and (1.8) gives the contribu- 
tion around the momentum scale L -j. 

We shall emphasize that the operators MjFjM~ are associated with 
the Laplacian decomposition 

n - - 1  

A-~= E MjFjM] + M.A;~M~ (1.12) 
j=O 

with 

lM, A 21M*~(x, y)[ ~< cL -n(d- 2) (1.13) 

(see Section 3), and that ~ - A~/2(MsFsM]) A 1/2 
A ~/2(M, A 2 ~ M~) A 1/2 are mutually orthogonal projections 

and ~n - 

~j~ /=  I~/j~j, ~ f  = ~j, 2 ~n, ~ = o~., ~n~j = ~j-~n 0 (1.14) 

(for j =  0,..., n - 1 ) .  The lattice wavelets (which we have claimed to be 
implicit in the structures presented here) are given by fj=-A1/Zmju (for 
any u in AN_j, with Cu=0) ,  the eigenfunctions of ~ above, and by 
hn-A1/~Mnv (for any v in AN_n) , the eigenfunctions of .~, (i.e., the 
wavelets are the spectral 
the orthogonality relation 
representation (1.6)] can 
different scales. However, 

decomposition of these operators). Note that 
between scales [which is needed to obtain the 
be stated as an orthogonality of wavelets on 
we find it notationally more economical and 

conceptually clearer to use the orthogonality as given in (1.14). Translation 
properties of the eigenfunctionS and commentaries about the formulas 
above are presented in ref. 1; see ref. 6 for more details about the relation 
between wavelets and the block renormalization group. 

One must also emphasize the simplicity of the generating function 
(1.6). Due to the orthogonal relations between operators associated with 
different momentum scales (in other words, to the connection with 
wavelets), the final formula is quite simple: there are two propagators 
[given by the formulas (1.7) and (1.8)] and there is no mixing between 
scales. 

Differentiating In Z(h), we generate the k-point truncated function 

~b(xi) - c~ k In Z(h)/c~h(xl)... ~?h(xk)I h =-0 
i 

k 

. .  V n =6k.2P,(xl, x2)--D~ y~ (0) ]-~ O,,G,(y,,xi)+RkN, 
i = 1  

(1.15) 
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c?u, acting on Yi, and 

Dk Vn ~ akwn/aZ(Yl )""  ~ Z ( Y k ) ,  
Y l  " " " Y k  

Ok h 
RkNn = 6~h(Xl )  " ' "  Oh(xk) =o 

xln  exp - P V n ( ~ , M n f b ) - D  p .~ V (nO)] 
p = l  ~ . l  [ D y l Y p  Y l "  . 

x a.,Gn(yi, x,)  h(x~) exp - Vn(~?~Mn~)) - -~ (~, A,~)) D~, 
i = 1  

(1.16) 

where we made explicit the derivatives of the effective potential at zero 
field. 

In the present article we intend to prove that lim N . . . .  RkNn=0, 
besides the well-known fact that the canonical scaling limit is given by the 
massless Gaussian Euclidean field. Intuitively, the vanishing of RkN n is 
expected since it represents, roughly, contributions from the momentum 
scale [0, L-n] .  

The rest of the paper is organized as follows: in Section 2 we give the 
Gibbs factor representation that is carried over by the renormalization 
transformations, and state inductive hypotheses which allow us to follow 
the flow of the derivatives of effective potential. In Section 3, using these 
hypotheses, we establish in detail the thermodynamic limit for the two- 
point function and carefully study its asymptotic behavior. Section 4 is 
devoted to technical proofs of the inductive hypothesis, and Section 5 to 
general correlations and final comments. 

2. S M A L L - L A R G E  FIELD ANALYSIS  A N D  INDUCTIVE  
HYPOTHESIS FOR THE DERIVATIVES OF THE EFFECTIVE 
POTENTIAL 

We extend here the small-large field analysis of refs. 2 and 3 for the 
flow of the derivatives of the effective potential in order to obtain a good 
control of these terms (i.e., of D k V" for arbitrary n). 

Y l  " " " Yk 

The considered method is a nonperturbative treatment of the block 
renormalization group, and was developed to deal simultaneously with the 
nonlocal potentials (created by the renormalization transformation) and 
with the positivity of the effective actions. Cluster expansions and 
analyticity properties of the effective interactions are used to solve these 
problems, but after separating the regions where the large block fields can 
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spoil the convergence of the expansions (these regions are controlled by 
iterative bounds). 

Let us introduce now the representation for the Gibbs factor (related 
to the small-large field division) which is carried over by the renormaliza- 
tion group transformations. The notation is similar to that in ref. 2 and we 
use the structures and results proved there. Thus, reading ref. 2 is necessary 
to understanding the present article (specifically, Section 4). 

We shall consider subsets D, X, Y,... of lattices L nA N o r  A N n being 
a union of blocks A of side L u~ centered at points LN~ n No (unless 
otherwise stated). By IXI we understand the number of blocks A in X, and 
by •(X) the length of the shortest connected graph on the centers of 
blocks A in X. By B we denote the union of blocks A intersecting B (B a 
subset of L nA N o r  A N _ n ) .  Note that now we are considering lattices such 
as L - n Z  d, not only unitary lattices. 

We take complex vector fields Z n on L-nAN (although only real fields 
interest us, bounds are easily obtained in a complex manifold), and for 
X c  L nA N define the small-field region as 

X n ( X )  = {Z ~ --  Z~(Z), z ~ X: IZ~(z)I < (no + n )  v 

IV~z~(z)[<cl(no+n) v+d if z + L - " e ~ e X }  (2.1) 

where c~ is a constant properly chosen, and v > �89 - is fixed. 
Given V0", where 

tpn(z) = (dn(~n)(z) (2.2) 

~b n is the real block field at the nth step, and ~ the minimizer on L nAN,  

sd~(z, Y l )=  L"(d 2)/2mn(Lnz, Y,) (2.3) 

( z s L  "Z a and yzeZa) ;  we define the large-field region Dn(VO n) as the 
smallest subset of L-nAN such that 

IV,~bn(z')l ,G< (no + n) v exp[e'd(z, z')] (2.4) 

for each z r D~(VOn), where c (=  e/~', for e a small constant depending only 
on the dimension, and fl' an L-dependent constant associated with the 
exponential decay of various kernels (proved in ref. 2), such as 

~r y,)[ ~< c exp[- f l 'd (z ,  y ,)]  (2.5) 

We shall separate the nonlocal quadratic term from the potential 
defining (remember that we have already separated the local quadratic 
part) 

V"(Z") - Vn(Z ") - �89 KnVz") (2.6) 
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Given Vr  a set D =D,(Vr and ) ~  ~ ,  we write the representa- 
tion for the Gibbs factor 

exp[--  P"(V~9"+)~')] = ~ I~ g~vD(v(P~+Z ") 
{xj} y 

xexp [ - -  ~, FT(V~h" + )~')] (2.7) 
y =  ~ UjXj 

where Z{x]} runs over the sets of disjoint X]cL nAN; D n Xj is a union 
of connected components of D; D c Uj xj ,  g ~  depends on )~" through its 

~,  
restriction to X~ (the same for Vy and Y). 

Now we state the inductive hypotheses for the effective potential (i.e., 
for the Gibbs factor representation) which allow us to prove the thermo- 
dynamic limit of the correlation formulas. In order to avoid unnecessary 
notational complications, we shall exhibit a detailed study for the two- 
point function only (but in Section 5 we extend the arguments and the 
hypotheses to a general correlation). 

The statement involves several parameters: 6, L, N0, r, B, E, no. For 
while we assume that 0 < 6 < 1, L > Lo(6), No > No(6, L), r > to(b, L, No), 
B<Bo(L, No), E>Eo(Lo, No, r), and no> ~o(C5, L, No, B, r, E), where Lo, 
No, ro, Bo, Eo, and no do not depend on the volume L ud, n o r  on n (the 
renormalization step). Later we take 6 as a function of L (precisely, there 
is a constant c so that 5"<~ cL 2n for all n). All constants are denoted by 
c, and none depends on the volume (N). 

We make four inductive assumptions: 

I n. g~x D is an even analytic functional on ~,(D, X, 1), where 

M,(D, X, a ) =  U (V~" Ix+ a ~ ( X ) )  {2.8) 
Dn(VqJ n) = D 

For all D 1 with DiceD= UjD~Xj, Xj disjoint, and z ' = V r  ~, 
D,(Vr ~) c D, ~" Ixje ~V,(Xj), we have 

Ig%~(z")l 
J 

~< exp [k.~(D~ ,V~")-2W y" ~(Xj)+E~ iOc~Xyl] 
J J 

(2.9) 

where 

~.(D, Z n) = dz + j ~  d~(z) (Z~(z)) 2 (2.10) 
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fo d a ( z ) - ~  L ~(d 1) f o r z ~ D , z + L - ~ e . r  
D z,~ o r z q ~ D , z + L - ~ e ~ D  (2.11) 

k , + l = k , + c ( n o + n  ) 2 (2.12) 

and a' as given in (2.4). 
~, 

2.. V r is an even analytic functional on 2 ~ ( Y) ,  bounded by 

I~~1 ~ 6 ~~ exp[ - 2 a ' ~ (  Y)] (2.13) 

~ ( 0 )  = 62Pq" 6z~(z) 6z~(z') (0) = 0 (2.14) 

3,. The irrelevant quadratic term satisfies 

where 

Ign(Z, Zt)l ~ (n -Jr- 1) 1 (~no+n ~ exp[_ 2c(Lkd(z, z ' ) ]  L ak 
k = O  

and for the wavefunction renormalization 

. .  

(2.15) 

[b~-b~+ll  ~<6 "~ (2.16) 

- "  2K,(Y), z, ~ Y, For Vy on z' 

'~ ( Z n )  -.}-n)4~+4aL -(d+~6',O+-exp[_2e'Aa(y)] ~z".(z--~) <~ ~(no 

(2.17) 

a~P~ (z.) +n) "~+ OZ~(~-~Z~(Z' ) ~c(no 4dL .(a+2~6.O+~exp[_2~,q~(y)] 

(2.18) 

(for z not in Y the derivative vanishes). 

The hypotheses 1.-3,  are considered and proved in ref. 2 (for each n 
so that 0 < n  < N - N 0 ) .  Note that 4., i.e., an extra contractive factor 
associated with the potential derivatives, is intuitively expected: naively 
taking, e.g., the p6tential 2n ~ [gn(Z)] ~ dz at the nth step with the derivative 
~?/0Zn(u), we pick up a factor L ,d obtaining k2,L-"a[g"(u)]  k-  1 

3. T H E  T W O - P O I N T  F U N C T I O N  

Before 4,, let us show that, in the thermodynamic limit, the two-point 
correlation is determined by P~(x,  y) and a subdominant term associated 
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with the limit of the second derivative of the effective potential at zero field 
as we have claimed. 

In fact, we shall prove the following proposition [see (1.15)]: 

2 

lim ((J(xl)O(xJ)=P~(xl x j -  lJm O 2 vn(O) l--[ r xi) 
Yl  , y2 

N , n ~  N , n ~ c ~  i = 1  

where the dominant term P~(Xl, x2) is given by bLlA(Xl, x2) plus a 
correction with faster falloff than (1 + Ixl-x=i)-(a+2);  and the decay of 
the second term is bounded by (1 + Ix I -x21)-(a+~"), ~,,> 0 and small. 

Differentiating twice in Z(h) of (1.6), we obtain 

(ok(x) O(y))=Pn(x, y)+ {f  Dq~ exp [-~-~ (~b, An~b,] G~O~(x, w) 

c32P O~G,~(z, y)} 

where the sum over repeated indices is always considered, and 

_ _  _ _  1 V p : e x p [  V~(z ) ]=exp[  l ~ n 0 0 ] e x p [ - g (  z, KnVz)] 

[by e x p ( -  p-n) we understand the expression given in (2.7)]. Note that to 
obtain (3.1) we have considered e x p [ - V n ( X +  OG~h)] at each step, but 
since [}2, ~?Gn(u, v)l ~< L ~ (which is proved below), it is always possible to 
take h sufficiently small so that the size of )~ + ~?G~h (and the small, large 
regions) is determined by X. We emphasize that Rku,, and the term 

2 n associated with Dy~y2V (0) are included in the second term of (3.1), and 
also that in (3.1) the lattice is unitary, i.e., w, x, y, z above are in Z a. 
Therefore, to use the results of Section 2, it is necessary to take Z 
in L ~A u given by z=Vdn~b (the derivative V also in L-'AN). Since 
r [which comes from (2.3)], the relation 
between the derivatives of p in different lattices is immediate: 

~ 2 p  n 
~b =Ln~X~(L-nwS~z~(L- z~ ~v~~ (3.2) az.(w) azc(z) ~oM~ 

At zero step we take V(~b) as an even analytic functional satisfying the 
hypotheses 20-40 {taking g(~b) _= e x p [ -  V(~b)], g satisfies the hypothesis lo 
for the considered models }. Thus, after n = N - N o  renormalization trans- 
formations, we have the formula (3.1) and p given by 1,-4,  [where, using 

822/73/3 -4~ 16 
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(3.2), g is in L-"AN] .  Note that in the final lattice L-(N-N~ there is 
only one block (of side L u~ which is the scale adopted for the block size). 
Consequently, P(Z) is given by g"(z) or e x p [ -  �89 K, V z ) -  V~(Z)],~" 
never by the product (i.e., one block is only in the large- or in the small- 
field region, never in both). 

Considering the last term in (3.1), the large-field contribution to the 
correlation function is very small and vanishes as n (and N) goes to 
infinity. Roughly (by 1.), Ig"(Z)l<~exp[k.(qk, AnO)] (the same bound 
following for derivatives of g", since it is analytic on a strip). For k.  < b./2 
[which follows for k < b / 2  at zero step; see ref. 2 and (2.12)], the large 
contribution is bounded by 

~D D~b exp[ - ( b , / 2  - k,)((~, A,~b)] L"dx L" x L" 

D~b exp[ - �89 A,~b)] p 

where L" above is a bound for ]ZyOG,(z, Y)I [using GnU_CA -1, which 
follows from (1.8), (1.13), and (2.15)]. It is easy to show that the denomi- 
nator is bigger than a positive constant [remember that the measure is 
concentrated in zero and that p(0)=  1 ]. The following inequality is proved 
in ref. 2: 

ID (Vq/")Z (Z') dz' = (~, AneW)Ir >~ c(no + n) 2v d2, z' ~ LnA N 

Thus, for v > � 8 9  - 1 (as considered here), the large-field region is 
controlled by exp [ - c (no  + n)2], and so, very small, vanishing rapidly as n 
goes to infinity. 

In the small-field region, p(•) - exp[ - �89 K,  Vz) - ~'~(X)], and we 
have 

~n 1 V a~p = - [a2.~ ~'3(z)] p + [a .  V~(z) ]  [a~ ~( z, K . V z ) ]  p 
2 I + [a.�89 K.Vz)]Ea~ Vg(Z)] P - 8.,~[5(VZ, K.Vz)]  p (3,3) 

where ? ,  above shall be understood as 3/OZ~,(L ".). 
From 4., the potential second derivative [first term on the RHS of 

(3.3)] is bounded by cL-"(d+2)fn~ which makes its 
contribution to the two-point function smaller than 

cL-"Ca + 2)6,0 +,(no + n)4V + 4d X L"dL"L" 

which vanishes as n ~ oo since 6 < 1. 
The second and third terms on the RHS of (3.3) are limited by 

eL-,(d+ 1)8,0 + n(n ~ + n)4V +4d X eL -"(a+ 1)(n o + n) 2v+ 2d 
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(due to 4. and the bounds for the derivatives of K. proved in the next 
section) and thus their contribution also vanishes as n ~ ~ .  

A more delicate analysis is necessary for the second derivative of the 
2 V n irrelevant quadratic part [last term in (3.3)]: it corresponds to Dy,y~ (0) 

in (1.15), and comes into the two-point function (3.1) as 

L "a O2[�89 KnVx)] O~Gn(w, x) 8vG.(z, y) 

= L"ax (L-"a)2• (V~K. V~)(L w, L - " z )  OuG.(w, x) 8~Gn(z, y) 

= J~z(x, y) (3.4) 

where V~ is the derivative in L-nAN (and 8~ in the unitary lattice). Using 
the relation V . ( L - " u ,  L - " v )  = L "(a+ 1)0~,(u, v), we obtain 

J'~2(x, y ) = L  -n(a 2)K~r y) (3.5) 

From Eqs. (3), (13), and (14) of Section 6 of ref. 2, 

K,, + I(L -("+ 1)u, L -(" + l)v) = La-  zK.(L-nu,  L -nv)  

+ /~n + 1 ~ / ~  t r  -- (n + 1)U, L-("+I)p) (3.6) 

where 

I/~.+l~tL-(~+l)u, L ("+l)v) I <~ c~.O+n(no +n)-Z~ e x p [ _ 2 ~ L  ( .+1) lu-v t ]  

(3.7) 

Starting with local interactions, iterating gives 

L "(a-2)K.(L "u, L-nv)  

,~- L c ~ O +  ( n - j )  

= J~=~ L (.-j)(a-2) {n 0+ ( n - j ) ]  2 ; exp ( -2s  " 

n - -  1 C ~ n o  + k 

= ~ L k(d-2) exp( - -2~ 'L-*]u- -v] )  
k = ~ (no + k)ZV 

And with 6'~< cL -2k (see next section), 

n-- i 

IL -'(a 2)Kn(L-"u,L-"v)I  ~ c  ~ L-~Uexp(--2cx'L -k lu-vl) 
k = l  

+Jlu-vl) 

(3.8) 

~<(l+lu-vlV (3.9) 
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Furthermore, from the bounds established in ref. 2 for the kernels of F, d ,  
V d ,  and V V d ,  we have 

IFk(u, v)l ~< c exp( --~' lu-- vl) 

IMk(U, v)[ ~< eL k(d- 2)/2 exp( - ~' [L-ku -- vl) 

[-which leads to [M,A;IM*,(u, v)[ ~< cL ,(a 2), (1.13)], and also 

[O ~O~Mk(U, v)[ < L-k(a+ 2)/2cka exp(-~'  [L-ku-- v[) 

leading to 

* ckaL kdexp(--~'L--k l u - v l )  IO~,OvMkFkMk(U, v)l ~< 

And from (1.8), (1.12), (1.13), (2.15), 

C 
IOa0~Gn(u, v)l ( l + l u - v l )  d-~' 

for e' small (where kd< cU'k). Thus, we obtain 

]J~2(x,y)l~c ~ ( l + l x - u l )  d+*'(l+lu--vl) d( l+lv- -y l )  -d+~' 

r 
~< 

(1 + I x -  yl )a ~,, 

i.e., faster falloff than A-~(x, y). 
Finally, we consider the behavior of P,(x, y), for n ~ m, 

Poo(x, y)=b~iA(x, y)-b~l~2(x, y) 

where 

1 2(x, y)l = Z b --boo" 2 y) 
k o bk J 

4 
3 2k ImkFkM*k(X , y)[ ~<ZS- 

boo k=0  

4 
<~c_z_ 5- ~ L-akL k(a 2)exp(_~,L-k]x_ y]) 

boo k=O 

~<c(1 + Ix-y l ) - (a+2~ 

and there is also a faster falloff than A l(x, y), proving the claim. 

(3a0) 

(3.11) 

(3.12) 
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We shall emphasize the fine control of subdominant terms as another 
advantage in using the orthogonal representation: the error term here, 
(9(Ixl-d+~), is smaller than those obtained in refs. 4 and 5. 

4. P R O V I N G  H Y P O T H E S I S  4 .  

4.1. Technical  Structures 

To prove the hypothesis 4. we adopt the technical procedure presented 
in ref. 2. The notation (except for the wavefunction constant, which we 
name b,) and the results obtained there are used here without repeating 
the proofs. Essentially, this subsection lists the main technical structures 
carefully described in ref. 2. 

The Gibbs factor representation (2.7) is recovered (i.e., we prove that 
it is valid for n + 1) after introducing Mayer and cluster expansions in the 
renormalization transformation (which controls the nonlocal potentials 
and interactions between fluctuation fields) and separating the main terms 
(the terms associated with local interactions and small fluctuation fields). 
Thus, after several manipulations (all details in ref. 2), writing ~(~ as Z, and 
X n+l  as  )~', we have 

expE-W'(z ' ) ]  ~ [ I  z,, , = pk(z  )x l~ exp [ -w3(z ' ) ]  (4.1) 

with w~ associated with the local interactions and small fluctuation fields 

~___ 1~2 V " 0"]  e x p [ -  w~(x')] l~ f exp[ - Vw(X ~ - ~ a.t;~ ; 
A':L IA'~3 

x lo (Zw)  d#b-,(Z~,) (4.2) 

where Z (fluctuation field) is defined by rewriting the renormalization 
transformation as 

e x p [ -  W'(X')] = f e x p [ -  V(L-d/2)((L 1.) +VSe(.))]  d~b_,(Z) (4.3) 

with 

lc32 W . . . .  W'(Z')= P '(Z')+ ~ tZ 1+ W'(O) (4.4) 

(remember that we always separate the local quadratic and constant parts 
in W'), and 

~r"(z) = (N. Qv' . /2z  ")(z) (4.5) 
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where F n is already defined (1.9), and also ~n in (2.3), (1.11). The operator 
Q: AN_n--AN_n\LAN_~_I-'* AN_ ~ is defined so that CQ =0,  and does 
the same as the 6-function in (1.4). In other words, 

exp[ - W'(Z')] = f exp[ - V(L-a/2z'(L-t. ) + V~r q) ] 6(C~) 

x exp[ - �89 An~/) ] Dr/ 

which is the expression used in ref. 1. See Eq. (23) in Section 2 of ref. 2 for 
details about  Q. In (4.2), Z~, means z[~, and lo(Z~,) is related to the size 
of Z: to obtain (4.1) a partition of unity specifying the magnitude of Z was 
introduced, 

1 = ~ I~(Z) (4.6) 
p 

where/~= (Px), Xe3N_n, p x = 0 ,  1,..., and 

l p ( Z ) =  1-[ l(B(no+n)VP~<~lZ~l<B(no+n)V(Px+l)) (4.7) 
x G A N -  n 

B a constant. Thus, in (4.2) we are considering only small fluctuation fields, 
as noted before. A structure to decouple the nonlocat dependence of the 
fields VLr and V V ~  on Z has also been introduced by defining the 
interpolating field V , ~ s :  

Vu~fS(z) = Z ~ so(1u~(Z) l~s (x)+  1uJ(Z ) lu~(x))(VpdQI'l/Z)(z, x)Z(x) 
i < j  x 

+ Z ~ 1 u~(Z) 1 us(x)(V, dQFUZ)(z, x) Z(x) (4.8) 
i x 

where, given {Xj}, {Y~}, and {Yz} (sets associated with the large-field 
region, Mayer expansions of the potential, and its irrelevant quadratic part, 
respectively), the sets U ~, i =  1 ..... n, are formed by dividing L-"AN into 
components connected with Xj, Y~, or Y~ [those U i not intersecting Xj, 
Y~, or Y~ are A sets--that is the case in (4.2)]. Set 

Z~( �9 ) = L-a/2z'(L t. ) + V~s( .  ) (4.9) 

Z ~ in (4.2) means that we consider only "local" interactions between 
fluctuation fields. 

The sum in (4.1) runs over the sets of disjoint ~'r with D ' \U~ X'~, each 
D' c~ Xc being a union of connected components of D' or empty. To define 
~-r we introduce ~', which contains the large-field region, large fluctuations, 
and nonlocal interactions: 

2=,Ru(UjL-'Xj) u(U~L-1y~,)u(UpL 1YI~)L.)(U~:n,/>I L-1Uy ) (4.10) 
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with ] Y~I, I YaI > 1 coming from Mayer expansions of the effective potential 
and its irrelevant quadratic part; and R defined as L-1R together with 
the next-neighbor blocks A in L -(~ § where R represents the large- 
fluctuation fields, 

R =  U {zEL n A N : d ( z , x ) < 2 ~ ' - l l o g ( l + p x ) }  (4.11) 
X ~ A N _  n 

Px is given by (4.7); a' is the same as in (2.4). The sets _U~ are associated 
with cluster expansions decoupling the nonlocal dependence of the fluctua- 
tion fields V ~  and V V ~  on Z, i.e., related to U i, U j given in (4.8). To 
understand them, we introduce F, the subset of pairs {(i,j)};<g (i, j from 
U ~, U j) and {FT}, the connected components of F. For i t  supp F~ (union 
of vertices i, j in F~) we denote the corresponding U by U~7, and thus define 
U~, as U; U~. Finally, ~c is obtained from the partition of X into polymers, 
i.e., connected components of the graph drawn on the blocks A in ~- 
formed by lines joining two different blocks if one is in L ~R and the other 
its next neighbor, or if both are in a single L-~Xj,  single L-~Y~, single 
L -  1 ya, or single _UT, n~ > 1. 

The polymer activity in (4.1) is given by 

E fI-I s(o )l-Ig ,(z )lq (e pE- - '  } 
p,{xj},{Y~},{r~},{o,~} ~ j 

• I-[ {exp[-�89 - 1} l-[ e x p [ -  ~'~(Z~)3 
A = L 2 \  Uj Xj 

• 1~ exp[--�89 
A ~ L X  

x lp(Zcx~) d#b-,(Zc2)/ [I  exp[- -w~(z ' ) ]  
--zl = 2 \ D '  

- Z f I~ S(tTr)F(Xj, Y=, Y~;Z ~) 
A..., {o~} 

x I~(ZLX) d~b ,(Zc~)/I-[ exp[--  w~(x')] (4.12) 
; A  

where 0 r = { ui~ } n'~ 1 ; 

S(5~) = E f dsr~ 8r~ ~ (4.13) 
re  

with the sum running over all connected graphs F on n~ points; 
d s r -  I](e,j)~ r dsv; 8 r =- I-I(;,j) (8/Dso); and the following restrictions were 
assumed: 
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(a) 

(b) 

D = L(D' 
(c) 

(d) 

(e) 
following 

6 vanishes outside L)~. 

Xj are disjoint, X j ~ D  formed by connected components of 

u L-~R), DnI~2~ Ujxj. 

Y~, Y a c L 2 ,  IY=I, IY~I > 1, Y~c~(UjXj)=~3. 
{_Ur} are partitions of LX, and U~ is connected with Xj, Y~, Ya. 

The graph on the blocks A c ~  is connected (constructed 
the procedure described above). 

In a few words, the nonlocal interactions and the large fields are 
considered in pD. 

The hypothesis 4, is assumed in the small-field region D ' =  ~3, where 
W' may be taken as W'(Z')=Z~ w'a(Z')+Zr W'y(Z'), with W'y given by 

e x p [ -  W'y(Z')] = ~ I~ P&(Z ~ ') 
{2r r 

X~ disjoint, 0~ 2~ = Y. So we write 

P'~= w ' ~ -  w ' ~ ( o ) -  l.~2r~z, > ,, ~ (IYI > 1 )  

t 1 2 * 

' =  ' - w S ( 0 )  ~ ' I) d W d - -  ~ 0  W d 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

The expression (4.14) involving potential exponentiation is suitable for 
work on derivatives: since it is given by disjoint polymers, the derivative 
will not cause a proliferation of terms (which would happen due to the 
product). Thus, in the expression 

e x p [ -  W'y()()] = 3)((z) ~ l~ P (4.18) 
t z ' ( z )  {2d 

only the term p ~  such that z e)~r is changed by the derivative operator. 
Concerning the r~lation between the derivatives of W'y and of e x p ( -  Wy)," 
it is obvious that 

- Dz W'r = Dz In exp( -- W'y) = 
Dz e x p ( -  W'y) 

e x p ( -  W'y) 
(4.19) 

2 , _ DZz, exp( - Wy) Dz exp( - W'r) x Dz, exp( - W'y) 
Dzz Wy - (4.20) 

exp( - W'y) exp( - 2 W'y) 

where we wrote c3/~?)((z) as Dz and ~?2/OZ'(z ) OZ'(z') as Dz2z,. 
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4.2. The Local Po ten t ia l  Es t imates  

We first study the derivatives of v~, the potential part which includes 
local interactions and small fluctuation fields. Here, the simplicity of the 
renormalization transformation (4.2) makes it easy to see the extra factors 
L ~ obtained with the derivatives (hypothesis 4,). To make this trans- 
parent, we present the analysis in detail (and repeat some arguments 
described in ref. 2). 

Equations (4.2) and (4.17) give us v3 in terms of the previous scale. In 
Appendix 1 of ref. 2 it is proved that 

rVu~eS(z)l < �89 + n) ~ 
(4.21) 

[V~V~(z ) [  < cnd(no + n) v 

f o r z C R ; z a n d  n i _< _< z + L eu ~ U ; 0 -,~ s -~ 1. Due to (4.21) and hypothesis 2,, 
the integrand exp[--V~,()~~176 is analytic in )( [-where 
Z~ = L-a/zx'(L-1 . ) 4_ V~O(. )] on Ld/2J{" n + I(A) [-considering Z on the 
support of lo(Z~,)]. In addition, 

] Va,(Z~ ~<6 "~ �89 [62Va,(Z~ ~c~5"~ 2"+2J (4.22) 

where the last inequality is due to (4.21) and 3, (later in this section, a 
bound associated with the irrelevant quadratic term is shown in detail). 
Thus, on Ld/ZJ~ff~+~(A), 

[exp[,- ~'~,(Z~ - �89176 - 1)[ <,c6"~ 2~+2a (4.23) 

leading to 

]exp[ - w~(z')] - 1[ ~< c6 "~ + n(n o +/7) 2v + 2d (4.24) 

since 

f(lo(Z•, ) -  1) d#b cB2(no n) 2v] 1 (Zz i , )  ~< e x p [ ,  + 

Hence, w3 is analytic on the region Ld/2X~+ I(A) and there 

]w'~[ <~ c6n~ + n) 2v+zd (4.25) 

To analyze v~ (quartic and higher parts of w3) we introduce a 
truncated expansion 

wS(z')= 
A':L I A ' c A  

2 
A ' : L - I A ' ~ A  

- l o g  f e x p [ -  Pa,(g ~ - 162Vw(z~ lo(Za,) d#b-'~(Z~,) 

1 

(4.26) 
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where 
1 

%'-  vAz~ +2 62vAz~ 

~ . ) ,  - ~ * e x p [ -  t%'(x~ l~ dl~b-l(Zw) (4.27) 
= ~ exp[ - t%, (Z~  10(Zw) d#b l(Zw) 

and (*;...; * ) r  means the truncated average. 
Introducing the complex variable ~ in w~(Y)(), using the Cauchy 

integral formula and (4.22), we obtain for Z'e 2of=+ I(A) and m > 0, 

d@ m ~=o ~ 'a , (z~  ~~ (4.28) 

and for m = 1, 2, 

~ m  = 1 o~62Va,(z~ <~c6n~ 2~+2a (4.29) 

(vanishing for m > 2). 
Thus, using the bounds (4.28), (4.29) above and the truncated 

expression (4.26), for Z 'e2~+~(A) ,  m > 2 ,  

<~ L ~rn ! L d/2 (~no + n (4.30) 
d ~  z=o  

and so, for v~(:g') on 2~+1(A),  

oo 1 d m 

IvS(z')l : ~ wS(ez') 
m! d z  m m-- 4 s  

a ( l _ 4 L  a/2) ~6~o+=<~6no+,+~ (4.31) ~<44L 

(large L and L - a <  6). 
To study the derivatives of v~, we take the truncated expression (4.26) 

and, in w3, consider the terms of quartie and superior order. For 
&'~(:g')/O)((u) we analyze 

2 aX'(u) ~U~')~ d t (1- t )2  K~ ' ;  ~ ' ;  ~UA')r 

(4.32) 
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The main part is given by Of',~,(x)/OX'(u) in the first term on the RHS of 
(4.32), which is bounded by [for Z' on La /2~+I (A) ]  

L - a/2 x cL ,,Ca + 1 36,,o + ,,(n o + n)4~ + 4d 

where the factor L d/2 comes from the relation between X' and Z, and the 
other from hypothesis 4.. Note that in OF"a,/cVZ'(u ) just one set d '  is con- 
sidered: the one which contains u (although, given A, there exist L a sets A' 
such that L 1d ' cA) .  Restricting ~' to 2YC~+I(A) we get the factor 
(21_L a/2)4 due to Cauchy estimates, and the bound becomes (for L-a<~ 6), 
say, 

c(no + n + 1 )4~+ 4a L -  (" + l)(d+ 1)c~,.0 +, + ~ (4.33) 

The second part of the RHS of (4.32) includes terms such as 
c?62Va,fi?)((u), which is bounded by 

L nax L -a/2 x f~, VKn(u, z) V V ~ ( z )  dz 

(the term VK~VVz' is not considered because it disappears within the 
truncated expansion). To bound K, we introduce Eq. (3.8) in the integral 
above, obtaining 

f ~ dz c~'~~ + n 
, VKn(u, z) ~ L" • (no + n) 2v 

Now we remark that the size of ~ is limited by relations with L0 and the 
main restriction is given by hypothesis"3~: to obtain (2.14) at step n +  1 
from (3.6) and (3.7) we need L-2 / (n  + l ) ~  ~/[(n + 1)+ 1]. Consequently, 
it is possible to get one constant c which does not depend on n, such that 
c~ n <~ cL -2~ (note that limn~ oo{ [(n + 1) + 1]/(n + 1)} ~ = e). Hence, 

fa, VK,(u ,  z) dz <<, L" • L-2nc (4.34) 

and the bound for O62V~,/OX'(u) becomes 

L - " a x L  a / 2 x L n x L - 2 ~ x c x s u p ( V V . C p  ) 

<~cL ~(d+I)L a/2X(no+n)2V+2a 

[from (4.21)]. But obviously, for v~ (i.e., quartic and superior terms of w~a) 
we must have another c52V~, or if'a, together with the term Kn in the 
considered part of the expansion (4.32), which is then limited by 
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6,0 +,(n  o + n)2~ + 2d x L - ' ( a +  1) L - d/2(n 0 _i_ rt)2v + 2d const 

c 6no+~+l L (n+l)(d+l)(rto+n)av+4d 
<.-6 

(note that  c, a l though depending on L, does not  depend on n). 
The same bound  follows for the last term of (4.32), leading to 

1 ~)~ (u) <~-2 c L - ( " +  l)(a+ l)(n~ + n + 1)4v+4d an~ l (4.35) 

Concerning 02v'/O)~'(u) O)~'(r), we shall analyze an expression similar to 
(4.32). Fo r  the first par t  <a2~, (X ' ) /0X' (u  ) Ox ' ( r )>g we obtain  the bound  

L d/2L d/2• n(d+Z)(~n~ 

for X' s La/2aff~ + ,(A ), and restricting to X' e 2J#~ + ~(A ), 

r 
- L -(n+ 1)(d+2)(rt 0 -  + n + --1) 4v+4d 6n0+n+ 1 
6 

Considering the rest of the expression, we note that  0262 Va,/O)((u) Ox'(r) 
�9 >r, and that  the disappears  in < . ; - > o  T and also in ~ d t ( 1 - t )  2 < . ; . , .  , 

greatest  term is associated with 

which is bounded  by 

( a a ~ v A z ) .  ~6= v ~ , ( x ) \  T 

cgz'(u) ' 0z ' ( r )  / o  

( L - , d L  cl/2LnL- 2n c • sup(VV~es)) :  

r 
<~ -~ L -(n+ l)(d+ 2)(rt 0 + rt + 1) 4v+4d •no+n+ 1 

(for L-a<~6) .  Altogether,  we get 

82VA(~ ' ) 1 
c~Z'(u) ~z ' (r)  <~ 2 cL -(n + 1)(d+ 2)(n ~ + n + 1 )4v + 4d 6~o + n + 1 (4.36) 

4.3. The Polymer Estimates 

Now,  to est imate the derivatives of W'y (the terms of order  four and 
higher, since we are interested in P'y) we shall evaluate the po lymer  
activities (4.12). 
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In Section 5 of ref. 2 a general polymer is carefully analyzed and 
bounds are established for the activities. In the small-field region D ' =  ~ ,  
several considerations are made to improve the bounds and to limit [W'y] 
properly, thus proving hypothesis 2,, i.e., I V~[ ~< 6 ~~ exp[ -2~ '5~  

Here we use all these results without repeating the proofs. We show 
how to extract the desired additional factors L -"  in the polymer expansion 
for the derivatives of F"r as compared to the expansion for P"r (already 
studied and controlled in ref. 2). Briefly, in the expression for D W'y, (4.19) 
(discarding in W'r the terms up to second order in )(), we show that it is 
always possible to make explicit one part bounded by 

(n o + n + 1 )4v + 4d L -  (" + ~)(u + 1)6.o +. + ~ exp [ -- 2ceLl(Y) ] 

and write the total expression as this part times the rest, which is limited 
by, say, 

{exp[I W'v - W'y(0)[ ] }2 ~< exp(6,0 + n) 

Similar considerations follow for D2W'> (4.20). 
Let us start with one derivative in W'r, analyzing (4.18) and (4.19), 

, i.e., the factors ~?p~/O)~ (z) therein. 
Polymers with R r  (containing large fluctuation fields) involve 

factors such as exp[ -cBZ(no+n)  2~ 1/~[] [see, e.g., Eq. (43) in Section 5 of 
ref. 2], much smaller than the factors we need. Let us then consider those 
with R = ~ .  

Terms with the derivative O/O)((z) acting in one Y~ [see (4.12)] have 
062 Vre/~)('(z) bounded by 

L-nax  L -d/2 x f VK(z, z') VV~eS(z ') dz' (4.37) 
Yfl 

[remembering that L -nd is due to the lattice L - n A N ,  and L -a/2 due to 
62Vr~-62Vve(Zs), with ) (=L-a/2)~ '+V~S].  Note that the derivatives of 
terms 62Vva, such as (Vz', KVx'), contribute just to the quadratic part of 
W' since 

e,pE w  ,l= expl , z ,  

/ 36 Vy+ Py 

* � 8 9  �89 +rest  (4.38) 
y o 
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[-see (4.3) and (4.26)], showing that the constant terms on Z disappear in 
the truncated expansion (except for the first term where 6 2 V y  is related to 
the quadratic part of W', which we do not consider here). From (4.21) and 
(4.34), (4.37) becomes 

<~ c L - " ( a +  1) L - a / z ( n  ~ + rt)2~ + 2d (4.39) 

But, obviously, the expansion for the derivative of quartic and higher parts 
of W'r must contain other terms 62Vyr ~y, .... (never one unique 62Vr~ ) .  

This other term is bounded by, say, 

c 6 " ~  G -If ' l ,  G large 

o r  

cc5"~ + "(no + n )2~ + 21 exp [ - 77'~LP (Ya) ] 

[see Eqs. (55) and (57) of Section 5 of ref. 2]. Thus, considering the 
product, we obtain the factor 

c L  ~" + 1)(d + 1) 6 ,o + n + 1 exp [ - 2c~'s176 ] (n o + n + 1 )4v + 4d 

(for the polymer in 2).  
The term with just one Y~ and ~ ( Y ~ ) >  L,o(2) yields 

L -d/2 • (L  -(d/2+ 1)6) X L n(d+ l)3n0+n 

x exp [ -- 2~'5e(2) ] (n o + n)av + 4d G -  121 

= L-(n + 1)(d+ 1)3n0 + n + 1 exp[ -- 2~ '~(~ ' ) ]  (no + n) 4v +4d G-121 

where (L (d/2+1)6) is extracted from the difference between 5r and 
~ (~ ' )  (L N~ large), and the other factors come from the relation between Z s 
and Z', and hypothesis 4. (assuming step n to prove n + 1). With one Y~ 
and 5('(Y~) = ~()~)  we have 

26 "~ e x p [ - 2 ~ ' ~ e ( ~ ) ]  x L n(d+l)x L all2 (4.40) 

where the first factor above is a bound for the polymer activity with the 
field Z' in the region �88 1(2); the second is due to the hypothesis 4. ;  
and the last is due to the relation between X" and Z'. 

We note that the estimate of similar polymers in the proof of 
hypothesis 2, in Section 5 of ref. 2 contains an extra factor L d-1 as com- 
pared to the first term in (4.40) above. The fact is that in Section 5 of ref. 2 
it is necessary to sum over all Y~ such that L ' Y~ = X', and there may exist 
up to L a 1 sets Y~ for each 2. But in our ease (for the derivative) we 
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consider just one set since only one of these L d- 1 different sets Y~ may 
contain the site z associated with the derivative O/t3Z'(z ). 

The restriction to the region X ' e2~+~(X)  introduces a factor 
(8L-d/Z) 4 leading in (4.40) to 36~~ 
(for L - d <  5). 

Due to S(U~.) [-see (4.12) and (4.13)-], the terms with no Y~ or Y# 
must contain derivatives of exp[-~-a(Z~)] or exp[--�89 Noting 
that #~ e x p [ -  F-a(Z~)] = #~(exp[- V~(Z~)-] - 1) [t3~ as defined in (4.13)], 
and the same for e x p [ -  �89 we follow an analysis similar to those 
described for F-r~ and 62Vrp. 

Thus, from (4.18), (4.19), the estimates, and the comments above, we 
get 

t3V'r(Z') <<. c(n 0 + n + 1 )4v +4d L - ( n  + 1)(d+ 1)(~n0 + n + 1 e x p [  - -  2~'L,r Y)-] 
~Z' (Z)  

Now we turn to the derivation of the second derivative assumption. 
From (4.14) 

d2exp[ -W' r (Z ' ) ]  O 2 { ~ , } 

az'(z) az'(~') az'(z) az'(z') y" I ]  p~(z ) {&} c 

(4.41 ) 

Let us first remark that, from the truncated expansion for W' [-see (4.38) 
and remarks], the terms including 0252 Vr (i.e., the second derivative of the 
irrelevant quadratic part) contribute only to the derivative of the quadratic 
part of W' (which does not interest us). 

We consider the terms with R = ~ .  Those with just one Y~, i.e., 
32,52Vr, are discarded in our analysis as described above. For those with 
two Ya, one derivative in Ya~ and another in Y&, using (4.39), we get 

2 r n)2V+2d ~Z-~'~ 6 Vr~I(Z ) <~cL-d/2L-~(d+l)(no+ 

and another similar factor due to Y&, leading to 

L u~+ 1)(d+2)t~no+n+ IC(Ho Ar n + 1)4v+4aexp[--2c(Se(X')] 

[for L-naLd<~c exp [ -2~ '~ ( )7 ) ]  6 n, which essentially means L - d < 5 ;  
note that for ~ formed by Ya, and Ya2, ~ ( X )  is not large, since [ Ya] ~< 4; 
see the comments below Eq. (14) in Section 3 of ref. 2-]. An analysis similar 
to that already described holds for the terms with one Y~ and one Ya; with 
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two Y~; with just one Y~ and ~ ( Y ~ ) > 5 ~  with one Y~ and 
5~(Y~) = 5e(~'); and also for those with no Y~ or Yp. Thus, we obtain 

a~7 c~z,(z ) c~z'(z') <~ cL ('~+ l~(d+2~(n o + n + 1) a~§ c~ ~~247 1 exp[--2a'~(~(Y)] 

for )( e 2Jr, + I(Y). 

5. GENERAL CORRELATIONS A N D  FINAL C O M M E N T S  

The same procedure adopted in the previous sections to control the 
two-point function applies for a general correlation. Here, we describe this 
analysis for the k-point function without the technical details, arguing to 
show the main points. 

Differentiating k times In Z(h) of (1.6), we obtain 

( r r 5 ~ 

:{fO ex [ 
O~lGn(Ul, Xl)-'-~.kG~(uk, xk)} • 

b, p}-~ (5.1) 

[see (3.1) for details], ui, xi now on the unity lattice. 
Let us consider only the delicate part: the small-field region with all 

the derivatives in the same term. Taking the kth derivative of the potential 
in (5.1), we need to control 

L ~a/2)~ Okp x ~ ,Gn(ul ,  Xx)"'" O.kG~(uk, xk) 

(5.2) 

For the ~" parts of order k + 2 and up (in)~) we shall obtain a bound by 
generalizing hypothesis 4.,  

IDk~'r(Z)l ~< cL "(a/2)kL-"x6"~ exp[ - 2 ~ ' ~ ( Y ) ]  (5.3) 

where )~E~,,(Y), Dk----Ok/~?Z(z~).-.Og(z~) [for k~>4, extra factors L -"  
control the factor (no + n) ~+a which appears in (2.16) and (2.17), k = 2]. 
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As a rapid argument we examine the renormalization transformation 
for the local potential. From (4.2), approximately, 

exp[ -vS(z ' ) ]  -~ c I-[ f exp[ -v~,(Z~ lo(Z~,) d#b ~(Z~,) (5.4) 
A':L IA'~.d J 

or, considering only the first order in v, 

vS(z')- ~ (5.5) 
A' :L- tA 'cA 

where ( * ) -=- ~ * lo(Z~,) d#b I(Z~,). Writing D '~-  ~k/?Z'(zl)... ~?Z'(zk), 
and for Z' e L~/2)V~+ I(A), 

D'kv'~(Z ') ~-- (L ./;)k (Dkv~,(zo) ) 

ID'%~()()l ~< (L-a/2) k (L-n(d/2)~L-"~6 ~~ 

where (L-d/2) k comes from the relation )(=L-d/2z+V~<r., and the other 
factor from the assumption (5.3) assumed in the nth step [remarking that 
the L d terms from the sum over A' in (5.5) disappear with the derivative]. 
Introducing the complex variable 5 as in Eq. (4.28), using Cauchy 
estimates, restricting Z' to 2 ~  + ~(A), and considering the potential parts of 
order k + 2 and higher (in)(), we get 

ID'kv~(Z')I ~ (L d/2)k L-n(d/2)kL-nk(~no+n ~ (1Ld/2) J 

j = k + 2  

L - ( n +  l)(d/2)kL--(n+ l)k(~no+n+ 1 

(for L - d <  6), which approximately justifies the generalization proposed 
in (5.3). 

Thus, with (5.3) and ]~XeAN (~#Gn(bt, x)l ~ Ln, it follows immediately 
that the contribution to the k-point truncated function of the potential 
parts with order higher than k vanishes at the thermodynamic limit [in 
(1.15), this means limu . . . .  R k N n = O ] .  

Now we turn to the analysis of the P part with k fields, which remains 
in the thermodynamic limit. For the kernel S~ of this term, i.e., 

S o ( L - " x ,  o (o) 
..... OZ,~(L b / i )  " ' "  O)~k(L-nUk)]z=_v~,, O 

following the basic property of the renormalization group, which says 
that the transformation maintains local potential modulo exponentially 
decaying tails, we expect 

Sn+ I(L -(~+ 1 ) X l , . . .  , L-(  "+ 1)xk ) = (td/2) k S n ( L - n X l , . . . ,  L-nXk) 

+ c~n(L nx~,..., L-"xk) (5.6) 

822/73/'3-4-17 
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where x~ ..... x k are in the unitary lattice, L d/2 is the scaling factor 
(7 /= L-d/2Z + "" "), and, as claimed, 

[c~n(L-~Xl,..., L-nxk)]  ~ c6 n~ exp[- -cd(L- 'x l , . . . ,  L - n x k ) ]  (5.7) 

where d(.,..., .) gives, in some sense, the distance between the points (e.g., 
the length of the shortest connected graph), and 6no+n is directly related to 
the bound for the perturbative potential (hypothesis 2,). 

Iterating (5.6) and using (5.7), we obtain 

n 

IL-n(a/2)kS,(L-"xl , . . . ,  L - % ~ ) l  ~ Y', L-Jak/ac~ "~ j e x p [ - c L - i d ( x l  ..... x~)] 
]-- 1 

~< c(1 + d(x  1 ,..., xk) )  -~d~/2 + 2) (5.8) 

See (3.8) and (3.9). And with I # , G , ( u , x ) l < ~ c ( l + l u - x ] )  -d+l  [see 
comments below Eq. (3.9)], we get for the term of the k-point truncated 
function which survives in the thermodynamic limit (and n ~ o0 ) 

k 
k n o Dyl "''Yk W ( ) ~ a~ian(yi, xi) 

i = 1  

<~ ~ C ( l + l x i _ Y i l ) a _ t  ( l+d(y l , . . . , yk) )dk /2+ 2 (5.9) yl,...,ykEA N i~ 

Note that this expression leads to a tree graph decay. It is easy to see 
that it vanishes in the scaling limit: taking the four-point function as an 
example, and roughly using 

1 C 

(1 + d(y~ ..... y4)) dk/2+2<~ ~ ( l + l y l - - y 2 1 ) d + ~ ( l + l y 3 - - Y 4 l )  a+~ pairings 

it follows that (5.9) with k = 4  is bounded by 

r 

F~ (1 + I x l - x 2 L )  "-2+~ (1 + tx3-x4[/-2+~ pairings 

a slight improvement for the estimatives presented in ref. 4 [although a 
much better bound may be obtained from (5.9)]. 

We remark that it is possible to improve the exponent (dk/2 + 2) in 
(5.9). Separating the potential V at the zero renormalization step into 
several parts, ~'(4),..., ~'~) and V~>k) (i.e., the parts with four fields,..., k 
fields, and more than k fields, respectively), and following each one by the 
renormalization flow, hypothesis 2, may be improved for each part ~'(k) 
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which receives ext ra  con t rac t ing  factors L -~(k/2 l)J due to Cauchy  

es t imates  [see Eqs. (4 .28)-(4.31)] .  This p rocedure  (the separa t ion  of if into 
several  par t s )  has a l r eady  been successfully used in ano the r  problem.  (7/ 
Thus,  an extra  factor  appears  in cg n of  (5.6) ( together  with 6n0+n), 
increasing the falloff. 

As a final comment ,  we emphas ize  once more  the advan tage  of using 
a represen ta t ion  showing the p rope r ty  of  o r thogona l i ty  between scales to 
s tudy cor re la t ion  functions:  the s implici ty of the final formulas,  specifically, 
the s t ructure  of the d o m i n a n t  par t  and  the easy analysis  of the sub- 
d o m i n a n t  one mus t  be ment ioned.  

Al though  we cons ider  in this pape r  only scalar  la t t ice models  and  the 
b lock  r enorma l i za t ion  group,  we would  like to see the extension of  the 
represen ta t ion  ob ta ined  here to more  compl ica ted  vector  and  fermionic 
models ,  as well as for o ther  r enormal i za t ion  groups  (e.g., for those 
considered in refs. 8 and  9). 

I t  should  also be men t ioned  that  in ref. 10 wavelets  are cons t ruc ted  
and re la ted  to the Gauss i an  fixed point .  
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